
Package: recalibratiNN (via r-universe)
September 4, 2024

Title Quantile Recalibration for Regression Models

Version 0.3.0

Description Enables the diagnostics and enhancement of regression
model calibration.It offers both global and local visualization
tools for calibration diagnostics and provides one
recalibration method: Torres R, Nott DJ, Sisson SA, Rodrigues
T, Reis JG, Rodrigues GS (2024)
<doi:10.48550/arXiv.2403.05756>. The method leverages on
Probabilistic Integral Transform (PIT) values to both evaluate
and perform the calibration of statistical models. For a more
detailed description of the package, please refer to the
bachelor's thesis available bellow.

License MIT + file LICENSE

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.1

URL https://bdm.unb.br/handle/10483/38504,

https://github.com/cmusso86/recalibratiNN,

https://cmusso86.github.io/recalibratiNN/

BugReports https://github.com/cmusso86/recalibratiNN/issues

Imports stats(>= 3.0.0), dplyr(>= 1.0.0), ggplot2 (>= 3.0.0), purrr(>=
1.0.0), RANN(>= 2.0.0), tidyr(>= 1.0.0), tibble(>= 3.0.0), glue
(>= 1.0.0), magrittr(>= 2.0.0), Hmisc (>= 5.0.0), Rdpack

RdMacros Rdpack

Suggests knitr, rmarkdown, testthat (>= 3.0.0)

Config/testthat/edition 3

VignetteBuilder knitr

Repository https://cmusso86.r-universe.dev

RemoteUrl https://github.com/cmusso86/recalibratinn

RemoteRef HEAD

RemoteSha 9e48ed2eada1a76fad6a39edbc7bddf8dc52d23d

1

https://doi.org/10.48550/arXiv.2403.05756
https://bdm.unb.br/handle/10483/38504
https://github.com/cmusso86/recalibratiNN
https://cmusso86.github.io/recalibratiNN/
https://github.com/cmusso86/recalibratiNN/issues

2 gg_CD_global

Contents

gg_CD_global . 2
gg_CD_local . 3
gg_PIT_global . 5
gg_PIT_local . 6
PIT_global . 8
PIT_local . 9
recalibrate . 11

Index 14

gg_CD_global Plots the cumulative distributions of PIT-values for global calibration
diagnostics.

Description

Visualizes the predicted vs. empirical cumulative distributions of PIT-values using ggplot.

This function creates a ggplot graph that compares the cumulative distributions of predicted and em-
pirical Probability Integral Transform (PIT) values. It shows the calibration quality of a regression
model by examining how well the predicted values conform to the observed values.

Usage

gg_CD_global(pit, ycal, yhat, mse)

Arguments

pit Numeric vector of global PIT-values. It is recommended to calculate these using
the PIT_global() function.

ycal Numeric vector representing the true observations (y-values) of the response
variable from the calibration dataset.

yhat Numeric vector of predicted response (y-hat-values) on the calibration dataset.

mse Mean Squared Error calculated from the calibration dataset.

Value

A ggplot object displaying a point graph of the empirical versus predicted cumulative distributions
of PIT-values.

gg_CD_local 3

Examples

n <- 10000
split <- 0.8

generating heterocedastic data
mu <- function(x1){
10 + 5*x1^2
}

sigma_v <- function(x1){
30*x1
}

x <- runif(n, 1, 10)
y <- rnorm(n, mu(x), sigma_v(x))

x_train <- x[1:(n*split)]
y_train <- y[1:(n*split)]

x_cal <- x[(n*split+1):n]
y_cal <- y[(n*split+1):n]

model <- lm(y_train ~ x_train)

y_hat <- predict(model, newdata=data.frame(x_train=x_cal))

MSE_cal <- mean((y_hat - y_cal)^2)

pit <- PIT_global(y_cal, y_hat, MSE_cal)

gg_CD_global(pit,y_cal, y_hat, MSE_cal)

gg_CD_local Plots the cumulative distributions of PIT-values for local calibration
diagnostics.

Description

This function generates a ggplot visual representation to compare the predicted versus empirical
cumulative distributions of Probability Integral Transform (PIT) values at a local level. It is useful
for diagnosing the calibration in different regions within the dataset, since miscalibration patterns
may differ across the covariate space. The function allows for customization of the plot layers to
suit specific needs. For advanced customization of the plot layers, refer to the ggplot2 User Guide.

Usage

gg_CD_local(

4 gg_CD_local

pit_local,
psz = 0.01,
abline = "black",
pal = "Set2",
facet = FALSE,
...

)

Arguments

pit_local A data frame of local PIT-values, typically obtained from PIT_local().

psz Double indicating the size of the points on the plot. Default is 0.001.

abline Color of the diagonal line. Default color is "red".

pal Palette name from RColorBrewer for coloring the plot. Default is "Set2".

facet Logical value indicating if a separate visualization for each subgroup is pre-
ferred. Default is FALSE.

... Additional parameters to customize the ggplot.

Details

This funcion will work with the output of the PIT_local() function, which provides the PIT-values
for each subgroup pf the covariate space in the appropriate format.

Value

A ggplot object displaying the cumulative distributions of PIT-values that that can be customized
as needed.

Examples

n <- 10000
split <- 0.8

mu <- function(x1){
10 + 5*x1^2
}

sigma_v <- function(x1){
30*x1
}

x <- runif(n, 1, 10)
y <- rnorm(n, mu(x), sigma_v(x))

x_train <- x[1:(n*split)]
y_train <- y[1:(n*split)]

x_cal <- x[(n*split+1):n]
y_cal <- y[(n*split+1):n]

gg_PIT_global 5

model <- lm(y_train ~ x_train)

y_hat <- predict(model, newdata=data.frame(x_train=x_cal))

MSE_cal <- mean((y_hat - y_cal)^2)

pit_local <- PIT_local(xcal = x_cal, ycal=y_cal, yhat=y_hat, mse=MSE_cal)

gg_CD_local(pit_local)
gg_CD_local(pit_local, facet=TRUE)

gg_PIT_global Plots Density Distributions of PIT-values for Global Calibration Di-
agnostics

Description

This function generates a ggplot visual representation of the density of Probability Integral Trans-
form (PIT) values globally. For advanced customization of the plot layers, refer to the ggplot2 User
Guide.

Usage

gg_PIT_global(
pit,
type = "density",
fill = "steelblue4",
alpha = 0.8,
print_p = TRUE

)

Arguments

pit Vector of PIT values to be plotted.

type Character string specifying the type of plot: either "density" or "histogram".
This determines the representation style of the PIT values.

fill Character string defining the fill color of the plot. Default is ’steelblue4’.

alpha Numeric value for the opacity of the plot fill, with 0 being fully transparent and
1 being fully opaque. Default is 0.8.

print_p Logical value indicating whether to print the p-value from the Kolmogorov-
Smirnov test. Useful for statistical diagnostics.

Details

This function also tests the PIT-values for uniformity using the Kolmogorov-Smirnov test (ks.test).
The p-value from the test is printed on the plot if print_p is set to TRUE.

6 gg_PIT_local

Value

A ggplot object depicting a density graph of PIT-values, which can be further customized.

Examples

n <- 10000
split <- 0.8

generating heterocedastic data
mu <- function(x1){
10 + 5*x1^2
}

sigma_v <- function(x1){
30*x1
}

x <- runif(n, 1, 10)
y <- rnorm(n, mu(x), sigma_v(x))

x_train <- x[1:(n*split)]
y_train <- y[1:(n*split)]

x_cal <- x[(n*split+1):n]
y_cal <- y[(n*split+1):n]

model <- lm(y_train ~ x_train)

y_hat <- predict(model, newdata=data.frame(x_train=x_cal))

MSE_cal <- mean((y_hat - y_cal)^2)

pit <- PIT_global(ycal=y_cal, yhat=y_hat, mse=MSE_cal)

gg_PIT_global(pit)

gg_PIT_local Plots Density Distributions of PIT-values for Global Calibration Di-
agnostics

Description

A function based on ggplot2 to observe the density of PIT-values locally. It is recommended to
use PIT-values obtained via the PIT_local function from this package or an object of equivalent
format. For advanced customization of the plot layers, refer to the ggplot2 User Guide.This function

gg_PIT_local 7

also tests the PIT-values for uniformity using the Kolmogorov-Smirnov test (ks.test). The p-value
from the test is printed on the plot if facet is set to TRUE.

Usage

gg_PIT_local(
pit_local,
alpha = 0.4,
linewidth = 1,
pal = "Set2",
facet = FALSE

)

Arguments

pit_local A tibble with five columns: "part", "y_cal", "y_hat", "pit", and "n", representing
the partitions, calibration data, predicted values, PIT-values, and the count of
observations, respectively.

alpha Numeric value between 0 and 1 indicating the transparency of the plot fill. De-
fault is set to 0.4.

linewidth Integer specifying the linewidth of the density line. Default is set to 1.

pal A character string specifying the RColorBrewer palette to be used for coloring
the plot. Default is "Set2".

facet Logical indicating whether to use facet_wrap() to separate different covari-
ate regions in the visualization. If TRUE, the p-value from the Kolmogorov-
Smirnov test is printed on the plot.

Value

A ggplot object representing the local density distributions of PIT-values, which can be further
customized through ggplot2 functions.

Examples

n <- 10000
mu <- function(x1){
10 + 5*x1^2
}

sigma_v <- function(x1){
30*x1

}

x <- runif(n, 2, 20)
y <- rnorm(n, mu(x), sigma_v(x))

x_train <- x[1:(n*0.8)]
y_train <- y[1:(n*0.8)]

8 PIT_global

x_cal <- x[(n*0.8+1):n]
y_cal <- y[(n*0.8+1):n]

model <- lm(y_train ~ x_train)

y_hat <- predict(model, newdata=data.frame(x_train=x_cal))

MSE_cal <- mean((y_hat - y_cal)^2)

pit_local <- PIT_local(xcal = x_cal, ycal=y_cal, yhat=y_hat, mse=MSE_cal)

gg_PIT_local(pit_local)
gg_PIT_local(pit_local, facet=TRUE)

PIT_global Obtain the PIT-values of a Model

Description

A function to calculate the Probability Integral Transform (PIT) values for any fitted model that
assumes a normal distribution of the output.

Usage

PIT_global(ycal, yhat, mse)

Arguments

ycal Numeric vector representing the true observations (y-values) of the response
variable from the calibration dataset.

yhat Numeric vector of predicted y-values on the calibration dataset.

mse Mean Squared Error calculated from the calibration dataset.

Details

This function is designed to work with models that is, even implicitly, assuming normal distribution
of the response variable. This includes, but is not limited to, linear models created using lm() or
neural networks utilizing Mean Squared Error as the loss function. The OLS method is used to
minimized residuals in these models. This mathematical optimization will also yield a probabilistic
optimization when normal distribution of the response variable is assumed, since OLS and maxi-
mum likelihood estimation are equivalent under normality. Therefore, in order to render a proba-
bilistic interpretation of the predictions, the model is intrinsically assuming a normal distribution of
the response variable.

Value

Returns a numeric vector of PIT-values.

PIT_local 9

Examples

n <- 10000
split <- 0.8

generating heterocedastic data
mu <- function(x1){
10 + 5*x1^2
}

sigma_v <- function(x1){
30*x1
}

x <- runif(n, 1, 10)
y <- rnorm(n, mu(x), sigma_v(x))

x_train <- x[1:(n*split)]
y_train <- y[1:(n*split)]

x_cal <- x[(n*split+1):n]
y_cal <- y[(n*split+1):n]

model <- lm(y_train ~ x_train)

y_hat <- predict(model, newdata=data.frame(x_train=x_cal))

MSE_cal <- mean((y_hat - y_cal)^2)

PIT_global(ycal=y_cal, yhat=y_hat, mse=MSE_cal)

PIT_local Obtain local PIT-values from a model

Description

This function calculates local Probability Integral Transform (PIT) values using localized subre-
gions of the covariate space from the calibration set. The output will be used for visualization of
calibration quality using the gg_CD_local() and gg_PIT_local()function.

Usage

PIT_local(
xcal,
ycal,
yhat,
mse,
clusters = 6,

10 PIT_local

p_neighbours = 0.2,
PIT = PIT_global

)

Arguments

xcal Numeric matrix or data frame of features/covariates (x-values) from the calibra-
tion dataset.

ycal Numeric vector representing the true observations (y-values) of the response
variable from the calibration dataset.

yhat Numeric vector of predicted response (y-hat-values) from the calibration dataset.

mse Mean Squared Error calculated from the calibration dataset.

clusters Integer specifying the number of partitions to create for local calibration using
the k-means method. Default is set to 6.

p_neighbours Proportion of xcal used to localize neighbors in the KNN method. Default is
0.2.

PIT Function used to calculate the PIT-values. Default is set to PIT_global() from
this package, that assumes a Gaussian distribution.

Details

It calculates local Probability Integral Transform (PIT) values using localized subregions of the co-
variate space from the calibration set. The centroids of such regions are derived from a k-means
clustering method (from the stats package). The local areas around these centroids are defined
through an approximate k-nearest neighbors method from the RANN package. Then, for this sub-
region, the PIT-values are calculated using the PIT function provided by the user. At the moment
this function is tested to work with the PIT_global() function from this package, which assumes
a Gaussian distribution. Eventually, it can be used with other distributions.

Value

A tibble with five columns containing unique names for each partition ("part"), "y_cal" (true ob-
servations), "y_hat" (predicted values), "pit" (PIT-values), and "n" (number of neighbors) for each
partition.

Examples

n <- 10000
split <- 0.8

mu <- function(x1){
10 + 5*x1^2
}

sigma_v <- function(x1){
30*x1

}

x <- runif(n, 1, 10)

recalibrate 11

y <- rnorm(n, mu(x), sigma_v(x))

x_train <- x[1:(n*split)]
y_train <- y[1:(n*split)]

x_cal <- x[(n*split+1):n]
y_cal <- y[(n*split+1):n]

model <- lm(y_train ~ x_train)

y_hat <- predict(model, newdata=data.frame(x_train=x_cal))

MSE_cal <- mean((y_hat - y_cal)^2)

PIT_local(xcal = x_cal, ycal=y_cal, yhat=y_hat, mse=MSE_cal)

recalibrate Generates Recalibrated Samples of the Predictive Distribution

Description

This function offers recalibration techniques for regression models that assume Gaussian distribu-
tions by using the Mean Squared Error (MSE) as the loss function. Based on the work by Torres R.
et al. (2024), it supports both local and global recalibration approaches to provide samples from a
recalibrated predictive distribution. A detailed algorithm can also be found in Musso C. (2023).

Usage

recalibrate(
yhat_new,
pit_values,
mse,
space_cal = NULL,
space_new = NULL,
type = c("local", "global"),
p_neighbours = 0.1,
epsilon = 0

)

Arguments

yhat_new Numeric vector with predicted response values for the new (or test) set.

pit_values Numeric vector of Global Probability Integral Transform (PIT) values calculated
on the calibration set. We recommend using the PIT_global function.

mse Mean Squared Error calculated from the calibration/validation set.

12 recalibrate

space_cal Numeric matrix or data frame representing the covariates/features of the cali-
bration/validation set, or any intermediate representation (like an intermediate
layer of a neural network).

space_new Similar to space_cal, but for a new set of covariates/features, ensuring they are
in the same space as those in space_cal for effective local recalibration.

type Character string to choose between ’local’ or ’global’ calibration.

p_neighbours Proportion (0,1] of the calibration dataset to be considered for determining the
number of neighbors in the KNN method. Default is set to 0.1. With p_neighbours=1,
calibration is global but weighted by distance.

epsilon Numeric value for approximation in the K-nearest neighbors (KNN) method.
Default is 0, indicating exact distances.

Details

The calibration technique implemented here draws inspiration from Approximate Bayesian Com-
putation and Inverse Transform Theorem, allowing for recalibration either locally or globally. The
global method employs a uniform kernel, while the local method employs an Epanechnikov kernel.

It’s important to note that the least squares method will only yield a probabilistic interpretation if
the output to be modeled follows a normal distribution, and this assumption was used to implement
this function.

The local recalibration method is expected to improve the predictive performance of the model,
especially when the model is not able to capture the heteroscedasticity of the data. However, there
is a trade off between refinement of localization and the Monte Carlo error, which can be controlled
by the number of neighbors. That is, when more localized, the recalibration will grasp local changes
better, but the Monte Carlo error will increase, because of the reduced number of neighbors.

When p_neighbours=1, recalibration is performed using the entire calibration dataset but with
distance-weighted contributions.

Value

A list containing the calibrated predicted mean and variance, along with samples from the recali-
brated predictive distribution and their respective weights calculated using an Epanechnikov kernel
over the distances obtained from KNN.

References

Torres R, Nott DJ, Sisson SA, Rodrigues T, Reis JG, Rodrigues GS (2024). “Model-Free Local Re-
calibration of Neural Networks.” arXiv preprint arXiv:2403.05756. doi:10.48550/arXiv.2403.05756.
Musso C (2023). “Recalibration of Gaussian Neural Network Regression Models: The Recali-
bratiNN Package.” Undergraduate Thesis (Bachelor in Statistics), University of Brasília. Available
at: https://bdm.unb.br/handle/10483/38504.

Examples

n <- 1000
split <- 0.8

Auxiliary functions

https://doi.org/10.48550/arXiv.2403.05756
https://bdm.unb.br/handle/10483/38504

recalibrate 13

mu <- function(x1){
10 + 5*x1^2
}

sigma_v <- function(x1){
30*x1
}

Generating heteroscedastic data.
x <- runif(n, 1, 10)
y <- rnorm(n, mu(x), sigma_v(x))

Train set
x_train <- x[1:(n*split)]
y_train <- y[1:(n*split)]

Calibration/Validation set.
x_cal <- x[(n*split+1):n]
y_cal <- y[(n*split+1):n]

New observations or the test set.
x_new <- runif(n/5, 1, 10)

Fitting a simple linear regression, which will not capture the heteroscedasticity
model <- lm(y_train ~ x_train)

y_hat_cal <- predict(model, newdata=data.frame(x_train=x_cal))
MSE_cal <- mean((y_hat_cal - y_cal)^2)

y_hat_new <- predict(model, newdata=data.frame(x_train=x_new))

pit <- PIT_global(ycal=y_cal, yhat= y_hat_cal, mse=MSE_cal)

recalibrate(
space_cal=x_cal,
space_new=x_new,
yhat_new=y_hat_new,
pit_values=pit,
mse= MSE_cal,
type="local")

Index

gg_CD_global, 2
gg_CD_local, 3
gg_PIT_global, 5
gg_PIT_local, 6

PIT_global, 8
PIT_local, 9

recalibrate, 11

14

	gg_CD_global
	gg_CD_local
	gg_PIT_global
	gg_PIT_local
	PIT_global
	PIT_local
	recalibrate
	Index

